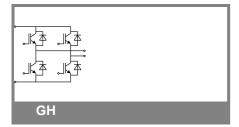
SK30GH067

IGBT Module

SK30GH067

Target Data

Features


- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Hyperfast NPT technology IGBT
- N-channel homogeneous silicon structure (NPT Non-Punch-Through IGBT)
- Positive V_{ce,sat} temperature coefficient (Easy paralleling)
- Low tail current with low temperature dependence
- · Low treshold voltage

Typical Applications

- Switching (not for linear use)
- High Frequencies Applications
- Welding generator
- Switched mode power supplies
- UPS

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specifi					
Symbol	Conditions			Values	Units
IGBT					
V _{CES}	T _j = 25 °C			600	V
I _C	T _j = 125 °C	T _s = 25 °C		45	Α
		T _s = 80 °C		30	Α
I _{CRM}	I _{CRM} = 2 x I _{Cnom}			120	Α
V_{GES}				± 20	V
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V; VCES < 600 V	T _j = 125 °C		10	μs
Inverse D	iode				•
I _F	T _j = 125 °C	$T_s = 25 ^{\circ}C$		48	Α
		T _s = 80 °C		30	Α
I _{FRM}	I _{FRM} = 2 x I _{Fnom}				Α
I _{FSM}	t _p = 10 ms; sinusoidal	T _j = °C		160	Α
Module					
I _{t(RMS)}					Α
T_{vj}				-40 + 150	°C
T _{stg}				-40 + 125	°C
V _{isol}	AC, 1 min.			2500	V

Characteristics $T_s = 25 ^{\circ}\text{C}$, unless otherwise specified						ecified
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{\text{GE(th)}}$	$V_{GE} = V_{CE}$, $I_C = 0.6$ mA		3	4	5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C			0,004	mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			240	nA
V _{CE0}		T _j = 150 °C			2	V
r _{CE}	V _{GE} = 15 V	T _j = 150°C				mΩ
V _{CE(sat)}	I _{Cnom} = 60 A, V _{GE} = 15 V			2,8	3,15	V
		$T_j = 125^{\circ}C_{chiplev}$		3,5	4	V
C _{ies}				3		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		0,3		nF
C _{res}				0,18		nF
t _{d(on)}						ns
t _r E _{on}	R_{Gon} = 11 Ω	$V_{CC} = 400V$				ns
E _{on}		I _{Cnom} = 60A		1,8		mJ
$t_{d(off)}$	R_{Goff} = 11 Ω	T _j = 125 °C				ns
t _f		V _{GE} =±15V				ns
E_{off}				1,4		mJ
R _{th(j-s)}	per IGBT				0,85	K/W

SK30GH067

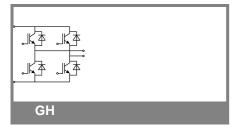
IGBT Module

SK30GH067

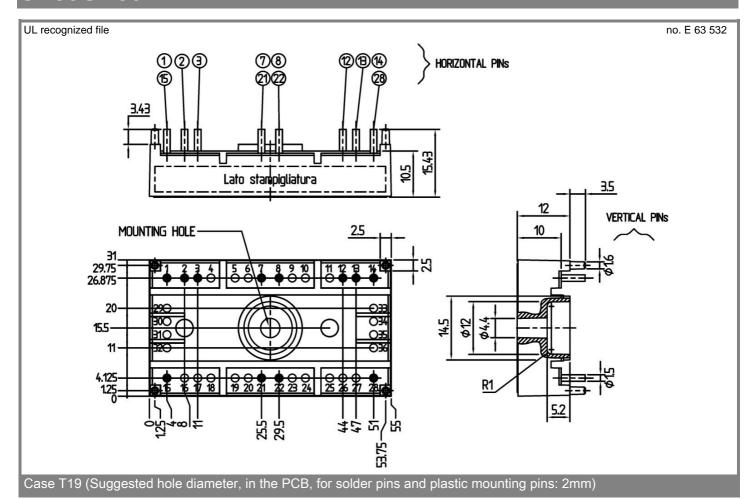
Target Data

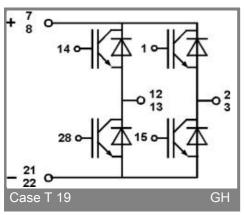
Features

- · Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Hyperfast NPT technology IGBT
- N-channel homogeneous silicon structure (NPT Non-Punch-Through IGBT)
- Positive V_{ce,sat} temperature coefficient (Easy paralleling)
- Low tail current with low temperature dependence
- · Low treshold voltage


Typical Applications

- Switching (not for linear use)
- High Frequencies Applications
- Welding generator
- Switched mode power supplies
- UPS


Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse Diode							
$V_F = V_{EC}$	$I_{Fnom} = 30 \text{ A; } V_{GE} = 0 \text{ V}$			1,1		V	
		$T_j = 150 ^{\circ}C_{chiplev.}$				V	
V _{F0}		T _j = 25 °C				V	
		T _j = 125 °C		0,85		V	
r _F		T _j = 25 °C				mΩ	
		T _j = 125 °C		7,1		mΩ	
I _{RRM}	I _{Fnom} = A	T _j = 125 °C				Α	
Q_{rr}	di/dt = -100 A/μs					μC	
E _{rr}	V _{CC} = 300V					mJ	
$R_{th(j-s)D}$	per diode				1,8	K/W	
M_s	to heat sink		2,25		2,5	Nm	
w				30		g	


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

SK30GH067

