

SEMITOP ${ }^{\circledR} 3$
IGBT Module

SK30GH067

Target Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Hyperfast NPT technology IGBT
- N-channel homogeneous silicon structure (NPT
Non-Punch-Through IGBT)
- Positive $\mathrm{V}_{\mathrm{ce} \text {,sat }}$ temperature coefficient (Easy paralleling)
- Low tail current with low temperature dependence
- Low treshold voltage

Typical Applications

- Switching (not for linear use)
- High Frequencies Applications
- Welding generator
- Switched mode power supplies
- UPS

Absolute Maximum Ratings		$\mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$, unless otherwise specified	
Symbol	Conditions	Values	Units
IGBT			
$\mathrm{V}_{\text {CES }}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	600	V
I_{C}	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$	45	
		30	A
$\mathrm{I}_{\text {CRM }}$	$\mathrm{I}_{\text {CRM }}=2 \times \mathrm{I}_{\text {Cnom }}$	120	A
$\mathrm{V}_{\text {GES }}$		± 20	V
$\mathrm{t}_{\mathrm{psc}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=300 \mathrm{~V} ; \mathrm{V}_{\mathrm{GE}} \leq 20 \mathrm{~V} ; \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\text {CES }}<600 \mathrm{~V} \end{aligned}$	10	$\mu \mathrm{s}$
Inverse Diode			
I_{F}	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C} \quad \mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$	48	A
	$\mathrm{T}_{\mathrm{s}}=80^{\circ} \mathrm{C}$	30	A
$\mathrm{I}_{\text {FRM }}$	$\mathrm{I}_{\text {FRM }}=2 \times \mathrm{I}_{\text {Fnom }}$		A
$\mathrm{I}_{\text {FSM }}$	$\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}$; sinusoidal $\quad \mathrm{T}_{\mathrm{j}}={ }^{\circ} \mathrm{C}$	160	A
Module			
$\mathrm{t}_{\text {(RMS) }}$			A
T_{vj}		-40 ... +150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$		-40 ... +125	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {isol }}$	AC, 1 min.	2500	V

Characteristics		$\mathrm{T}_{\mathrm{s}}=25^{\circ} \mathrm{C}$, unless otherwise specified				
Symbol	Condition		min.	typ.	max.	Units
IGBT						
$\mathrm{V}_{\text {GE(th) }}$	$\mathrm{V}_{\text {GE }}=\mathrm{V}_{\text {CE }}, \mathrm{I}_{\mathrm{C}}$		3	4	5	v
$\mathrm{I}_{\text {CES }}$	$\mathrm{V}_{\text {GE }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{C}}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			0,004	mA
$\mathrm{I}_{\text {GES }}$	$\mathrm{V}_{C E}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{G}}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			240	nA
$\mathrm{V}_{\text {CE0 }}$		$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$			2	V
$\mathrm{r}_{\text {CE }}$	$\mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}$	$\mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}$				$\mathrm{m} \Omega$
$\mathrm{V}_{\text {CE(sat) }}$	$\mathrm{I}_{\text {Cnom }}=60 \mathrm{~A}$,	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}_{\text {chiplev. }} \\ & \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}_{\text {chiplev. }} . \end{aligned}$		$\begin{aligned} & \hline \text { 2,8 } \\ & 3,5 \end{aligned}$	$\begin{gathered} 3,15 \\ 4 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\begin{aligned} & \hline \mathrm{C}_{\text {ies }} \\ & \mathrm{C}_{\text {oes }} \\ & \mathrm{C}_{\text {res }} \end{aligned}$	$\mathrm{V}_{\mathrm{CE}}=25, \mathrm{~V}_{\mathrm{GE}}$	$\mathrm{f}=1 \mathrm{MHz}$		$\begin{gathered} 3 \\ 0,3 \\ 0,18 \end{gathered}$		$\begin{aligned} & \mathrm{nF} \\ & \mathrm{nF} \\ & \mathrm{nF} \end{aligned}$
$\begin{array}{\|l} \hline \mathrm{t}_{\mathrm{d}(\text { on })} \\ \mathrm{t}_{\mathrm{r}} \\ \mathrm{E}_{\mathrm{on}} \\ \hline \end{array}$	$\mathrm{R}_{\text {Gon }}=11 \Omega$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=400 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{Cnom}}=60 \mathrm{~A} \end{aligned}$		1,8		$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~mJ} \end{aligned}$
$\begin{aligned} & t_{\text {doff }} \\ & t_{f} \\ & E_{\text {off }} \end{aligned}$	$\mathrm{R}_{\text {Goff }}=11 \Omega$	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{GE}}= \pm 15 \mathrm{~V} \end{aligned}$		1,4		ns ns mJ
$\mathrm{R}_{\mathrm{th}(-\mathrm{s})}$	per IGBT				0,85	K/W

SEMITOP ${ }^{\text {® }} 3$
IGBT Module

SK30GH067

Target Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- Hyperfast NPT technology IGBT
- N-channel homogeneous silicon structure (NPT Non-Punch-Through IGBT)
- Positive $\mathrm{V}_{\mathrm{ce}, \text { sat }}$ temperature coefficient (Easy paralleling)
- Low tail current with low temperature dependence
- Low treshold voltage

Typical Applications

- Switching (not for linear use)
- High Frequencies Applications
- Welding generator
- Switched mode power supplies
- UPS

Characteristics						
Symbol	Conditions		min.	typ.	max.	Units
Inverse Diode						
$\mathrm{V}_{\mathrm{F}}=\mathrm{V}_{\mathrm{EC}}$	$\mathrm{I}_{\text {Fnom }}=30 \mathrm{~A} ; \mathrm{V}_{\mathrm{GE}}=0 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}_{\text {chiplev. }} \\ & \mathrm{T}_{\mathrm{j}}=150^{\circ} \mathrm{C}_{\text {chiplev. }} \end{aligned}$		1,1		$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{FO}		$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C} \end{aligned}$		0,85		$\begin{aligned} & \hline \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
r_{F}		$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{j}}=125^{\circ} \mathrm{C} \end{aligned}$		7,1		$\begin{aligned} & \mathrm{m} \Omega \\ & \mathrm{~m} \Omega \end{aligned}$
$\begin{aligned} & \mathrm{I}_{\mathrm{RRM}} \\ & \mathrm{Q}_{\mathrm{rr}} \\ & \mathrm{E}_{\mathrm{rr}} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\text {Fnom }}=\mathrm{A} \\ & \mathrm{di} / \mathrm{dt}=-100 \mathrm{~A} / \mu \mathrm{s} \\ & \mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{j}}=125^{\circ} \mathrm{C}$				A $\mu \mathrm{C}$ mJ
$\mathrm{R}_{\text {th(j-s) } \mathrm{D}}$	per diode				1,8	K/W
$M_{\text {s }}$	to heat sink		2,25		2,5	Nm
w				30		g

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

Case T19 (Suggested hole diameter, in the PCB, for solder pins and plastic mounting pins: 2mm)

